# Newtonian fluid flow in a slightly tapered tube

A fluid (of constant density  $\rho$ ) is in incompressible, laminar flow through a tube of length *L*. The radius of the tube of circular cross section changes linearly from  $R_0$  at the tube entrance (z = 0) to a slightly smaller value  $R_L$  at the tube exit (z = L).

Such a flow occurs when a lubricant flows in certain lubrication systems (It means high viscosity, and so low Reynolds number, Re~1).



Figure. Fluid flow in a slightly tapered tube.

Using the lubrication approximation, determine the mass flow rate vs. pressure drop (*w* vs.  $\Delta P$ ) relationship for a Newtonian fluid (of constant viscosity  $\mu$ ).

## Solution

## Step. Hagen-Poiseuille equation and lubrication approximation:

The mass flow rate vs. pressure drop (*w* vs.  $\Delta P$ ) relationship for a Newtonian fluid in a circular tube of constant radius *R* is

$$w = \frac{\pi \Delta P R^4 \rho}{8 \mu L} \quad (1)$$

The above equation, which is the famous Hagen-Poiseuille equation, may be re-arranged as

$$\frac{\Delta P}{L} = \frac{8\,\mu\,w\,1}{\rho\,\pi}\frac{(2)}{R^4}$$

For the tapered tube, note that the mass flow rate w does not change with axial distance z. If the above equation is assumed to be approximately valid for a differential length dz of the tube whose radius R is slowly changing with axial distance z, then it may be re-written as

$$- \frac{dP}{dz} = \frac{8 \,\mu \, w}{\rho \, \pi} \, \frac{1}{[R(z)]^4}$$
 (3)

The approximation used above where a flow between non-parallel surfaces is treated locally as a flow between parallel surfaces is commonly called the lubrication approximation because it is often employed in the theory of lubrication. The lubrication approximation, simply speaking, is a local application of a one-dimensional solution and therefore may be referred to as a quasi-one-dimensional approach.

Equation (3) may be integrated to obtain the pressure drop across the tube on substituting the taper function R(z), which is determined next.

### Step. Taper function

As the tube radius *R* varies linearly from  $R_0$  at the tube entrance (z = 0) to  $R_L$  at the tube exit (z = L), the taper function may be expressed as  $R(z) = R_0 + (R_L - R_0) z / L$ . On differentiating with respect to z, we get

$$\frac{dR}{dz} = \frac{R_L - R_0}{L} \quad (4)$$

Equation (3) is readily integrated with respect to radius R rather than axial distance z. Using equation (4) to eliminate dz from equation (3) yields

$$(-dP) = \frac{8 \,\mu \, w}{\rho \,\pi} \frac{L}{R_L - R_0} \frac{dR}{R^4}$$
(5)

Integrating the above equation between z = 0 and z = L, we get

$$\int_{P_0}^{P_L} (-dP) = \frac{8 \,\mu \, w}{\rho \,\pi} \frac{L}{R_L - R_0} \int_{R_0}^{R_L} \frac{dR}{R^4}$$
(6)

$$\frac{P_0 - P_L}{L} = \frac{8 \,\mu \,w}{\rho \,\pi} \frac{1}{3 \,(R_L - R_0)} \left(\frac{1}{R_0^3} - \frac{1}{R_L^3}\right)$$
(7)

Equation (7) may be re-arranged into the following standard form in terms of mass flow rate:

$$w = \frac{\pi \,\Delta P \,R_0^{\,4} \,\rho}{8 \,\mu \,L} \left[\frac{3 \,(\lambda - 1)}{1 - \lambda^{-3}}\right] = \frac{\pi \,\Delta P \,R_0^{\,4} \,\rho}{8 \,\mu \,L} \left[\frac{3 \,\lambda^3}{1 + \lambda + \lambda^2}\right] \tag{8}$$

where the taper ratio  $\lambda \equiv R_L / R_0$ . The term in square brackets on the right-hand side of the above equation may be viewed as a taper correction to equation (1).

#### Felice De Santis